Clinical relevance
- “Manufacturer matters”: the four abutments look very similar on clinical examination, but differed significantly in performance, indicating the impact of design and production method.
- Engineered, not copied: NobelProcera restorations offer a precise fit, be it on Nobel Biocare or other implant systems.
- Observed failure modes in this study are consistent with those observed clinically.

Scientific evidence
Data from in vitro fatigue testing of four different zirconia CAD/CAM abutments (all mounted on Straumann® Bone Level implants):
- Full zirconia: Straumann® and Atlantis™
- Zirconia with titanium base: NobelProcera and Glidewell Laboratories.

Study findings
Resistance to failure differed significantly under accelerated loading conditions (150–200 N):
- No NobelProcera Abutment failed.
- All Glidewell abutments failed.
- All Atlantis™ abutments failed.
- 41% of Straumann® abutments failed.

At a clinical load of 70 N, the extrapolated loading cycles for a 10% failure rate are therefore immensely higher for NobelProcera Abutments (sextillion vs million cycles).

Zirconia abutments with titanium base

<table>
<thead>
<tr>
<th>Abutment</th>
<th>Extrapolated cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>NobelProcera</td>
<td>1,000,000,000,000,000,000,000 (1 sextillion cycles)</td>
</tr>
<tr>
<td>Glidewell</td>
<td>1,000,000 (1 million cycles)</td>
</tr>
</tbody>
</table>

Extrapolated cycles for 10% failure at 70 N (expected clinical load)

Full zirconia abutments

<table>
<thead>
<tr>
<th>Abutment</th>
<th>Extrapolated cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straumann®</td>
<td>30,000,000 (30 million cycles)</td>
</tr>
<tr>
<td>Atlantis™</td>
<td>20,000,000 (20 million cycles)</td>
</tr>
</tbody>
</table>

"Manufacturer matters": resistance to failure differed significantly, indicating the impact of design and production method.
Abstract

Study title

Purpose
Zirconia is being widely used, at times apparently by simply copying a metal design into ceramic. Structurally, ceramics are sensitive to both design and processing (fabrication) details. The aim of this work was to examine four computer-aided design/computer-assisted manufacture (CAD/CAM) abutments using a modified International Standards Organization (ISO) implant fatigue protocol to determine performance as a function of design and processing.

Materials and methods
Two full zirconia and two hybrid (Ti-based) abutments (n=12 each) were tested wet at 15 Hz at a variety of loads to failure. Failure probability distributions were examined at each load, and when found to be the same, data from all loads were combined for lifetime analysis from accelerated to clinical conditions.

Results
Two distinctly different failure modes were found for both full zirconia and Ti-based abutments. One of these for zirconia has been reported clinically in the literature, and one for the Ti-based abutments has been reported anecdotally. The ISO protocol modification in this study forced failures in the abutments; no implant bodies failed. Extrapolated cycles for 10% failure at 70 N were: full zirconia, Atlantis 2 × 10⁷ and Straumann 3 × 10⁷; and Ti-based, Glidewell 1 × 10⁶ and Nobel 1 × 10⁶. Under accelerated conditions (200 N), performance differed significantly: Straumann clearly outperformed Astra (t test, P = .013), and the Glidewell Ti-base abutment also outperformed Atlantis zirconia at 200 N (Nobel ran-out; t test, P = .035).

Conclusion
The modified ISO protocol in this study produced failures that were seen clinically. The manufacture matters; differences in design and fabrication that influence performance cannot be discerned clinically.

Impact of design and production method

Glidewell: “For both debonding/fracture and tube tearing, Glidewell parts failed at much lower loads and shorter number of cycles than did Nobel Biocare parts; hence, there must be influential differences in design and/or manufacturing.”

Atlantis™: “Machined surfaces (screw seat and screw hole) had a layer of poorly sintered material with considerable porosity to a depth of approximately 5 μm. This presumably resulted from the manufacturer leaving a layer of machining (or grinding) dust on the surface during final sintering. Such a grinding dust layer would have a very low packing density inhibiting sintering.”

© Quintessence Publishing. All rights reserved. No part of this abstract may be reproduced in any form or by any means without expressed permission from the publisher. Printed with permission.

For more scientific evidence visit
noblebiocare.com/science

Nobel Biocare™

GMT 63101 GB 1906 © Nobel Biocare Services AG, 2019. All rights reserved. Nobel Biocare, the Nobel Biocare logotype and all other trademarks are, if nothing else is stated or is evident from the context in a certain case, trademarks of Nobel Biocare. Please refer to noblebiocare.com/trademarks for more information. Product images are not necessarily to scale. Disclaimer: Some products may not be regulatory cleared/released for sale in all markets. Please contact the local Nobel Biocare sales office for current product assortment and availability.