Note: In order to improve readability, Nobel Biocare does not use ™ or ® in the running text. By doing so, however, Nobel Biocare does not waive any right to the trademark or registered mark and nothing herein shall be construed to the contrary.

Disclaimer: Some products may not be regulatory cleared/released for sale in all markets. Please contact the local Nobel Biocare sales office for current product assortment and availability.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Subsections</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>Quick guide</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Technical specifications</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Extended treatment options</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Implant specifications</td>
<td>8</td>
</tr>
<tr>
<td>Surgical procedure</td>
<td>Important considerations</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Surgical access</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Drill sequence</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Implant insertion</td>
<td>17</td>
</tr>
<tr>
<td>Advanced surgical procedures</td>
<td>NobelActive 3.0</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Implant orientation adjustments</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Stabilization in wide sockets</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Active placement in extraction sockets</td>
<td>24</td>
</tr>
<tr>
<td>Restorative procedure</td>
<td>Important considerations</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>Finalization of implant surgery and temporary restorations</td>
<td>28</td>
</tr>
<tr>
<td>Product information</td>
<td>Flowcharts</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Surgery kits</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Implants</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Surgical components</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Temporary restorations</td>
<td>49</td>
</tr>
<tr>
<td>Appendices</td>
<td>Manual torque wrench</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Drill stops</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Cleaning and sterilization</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Customer service worldwide</td>
<td>55</td>
</tr>
</tbody>
</table>
Quick guide

Flap technique

Twist Drill with Tip Ø 2 mm

Twist Step Drill Ø 2.4/2.8 mm

Twist Step Drill Ø 3.2/3.6 mm

Flapless technique

Twist Drill with Tip Ø 2 mm

Note: The illustrations show the drill sequence for NobelActive RP 4.3 in medium bone. For other implant diameters and bone densities, see drill protocols on page 13. For specific information regarding NobelActive 3.0, see page 21.
Implant placement

- Two-stage delayed function
- One-stage Immediate Function
- One-stage delayed function
Technical specifications

Platform concept
– To facilitate treatment planning, clinical procedures and component identification, NobelActive implants are organized according to a “platform concept”. The platform marking corresponds to the implant-abutment interface.

– For accurate component identification prosthetic components are color-coded as follows: not color-coded for 3.0 (grey), magenta for Narrow Platform (NP), yellow for Regular Platform (RP) and blue for Wide Platform (WP).

Technical specifications

<table>
<thead>
<tr>
<th>Platform</th>
<th>Platform diameter</th>
<th>Implant diameter</th>
<th>Abutment interface</th>
<th>Lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Ø 3.0</td>
<td>Ø 3.0</td>
<td>Ø 2.5</td>
<td>– 10 11.5 13 15 –</td>
</tr>
</tbody>
</table>

3.0: Extremely limited space. Not enough bone for NP implant.

Note: NobelActive 3.0 is only indicated for the replacement of single-unit maxillary lateral incisors and single-unit mandibular lateral and central incisors. Multiple-unit restorations are neither indicated nor accommodated by restorative components.

| NP | Ø 3.5 | Ø 3.5 | Ø 3.0 | – 8.5 10 11.5 13 15 18 |

Narrow Platform: Limited interdental space. Not enough alveolar bone for an RP implant.

Note: Narrow Platform implants are not recommended to be used in the posterior region.

| RP | Ø 3.9 | Ø 4.3 | Ø 3.4 | – 8.5 10 11.5 13 15 18 |
| | Ø 5.0 | Ø 5.0 | Ø 3.4 | – 8.5 10 11.5 13 15 18 |

| WP | Ø 5.1 | Ø 5.5 | Ø 4.4 | 7 8.5 10 11.5 13 15 – |

Measurements are in mm.
Extended treatment options

Indications for use
NobelActive implants are endosseous implants intended to be surgically placed in the upper or lower jaw bone for anchoring or supporting tooth replacements to restore patient esthetics and chewing function.

NobelActive implants are indicated for single- or multiple-unit restorations in splinted or non-splinted applications. This can be achieved with two-stage or one-stage surgical technique in combination with immediate, early or delayed loading protocols, recognizing sufficient primary stability and appropriate occlusal loading for the selected technique. **NobelActive 3.0 implants are intended to replace a lateral incisor in the maxilla and/or a central or lateral incisor in the mandible.** NobelActive 3.0 implants are indicated for single-unit restorations only.

Contraindications
It is contraindicated to place NobelActive implants in patients:
- who are medically unfit for an oral surgical procedure.
- with inadequate bone volume unless an augmentation procedure can be considered.
- in whom adequate sizes, numbers or desirable positions of implants are not reachable to achieve safe support of functional or eventually parafunctional loads.
- allergic or hypersensitive to commercially pure titanium grade 4, titanium alloy Ti-6Al-4V (titanium, aluminum, vanadium), stainless steel or DLC (diamond-like carbon) coating.
NobelActive 3.0 implants are not indicated to be used to replace a central incisor, a canine, a premolar or a molar in the maxilla, nor to replace a canine, a premolar or a molar in the mandible. NobelActive 3.0 implants are not indicated to be used for multiple-tooth replacements.

Considerations based on bone quality and quantity
Proceed with examination and treatment planning according to established protocols.

Confirm available bone and significant anatomical landmarks such as blood vessels, nerves and concavities. Use conventional diagnostic tools, such as radiographic imaging, probing and palpation, and 3D imaging if indicated.

Traditionally, the density of compact bone provides good primary stability for the installed implant. To improve stability in softer bone qualities, the body of NobelActive is tapered. It is further enhanced by threads that increase in vertical thickness as insertion proceeds to condense bone. These features, combined with the possibility for under-preparation of site diameter in soft bone, allow for achievement of substantial stability also in predominantly cancellous bone sites (see drill protocol based on bone quality page 13).

The amount of bone available for implant retention differs from site to site. The implant is “active” enabling an angle change during insertion. This ability for redirection allows the implant to be inserted into available bone, for example within the palatal wall of an anterior extraction socket, and then be redirected for stabilization while establishing proper restorative alignment (see page 24).

To maintain vertical tissue dimension, be sure to allow at least 1.5 mm of bone both lingual to and buccal to the implant collar. The special narrowing of the implant collar diameter allows for favorable ridge adaptation when crestal ridge width is limited.
Implant specifications
<table>
<thead>
<tr>
<th>Platform</th>
<th>Tip diameter</th>
<th>Collar height</th>
<th>Thread height</th>
<th>Thread spacing</th>
<th>Thread pitch</th>
<th>Total length</th>
<th>Major diameter</th>
<th>Abutment interface</th>
<th>Bridge interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>1.95</td>
<td>0.8</td>
<td>8.7</td>
<td>1.0</td>
<td>2.0</td>
<td>9.5</td>
<td>3.0</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.95</td>
<td>0.8</td>
<td>10.2</td>
<td>1.0</td>
<td>2.0</td>
<td>11.0</td>
<td>3.0</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.95</td>
<td>0.8</td>
<td>11.7</td>
<td>1.0</td>
<td>2.0</td>
<td>12.5</td>
<td>3.0</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1.95</td>
<td>0.8</td>
<td>13.7</td>
<td>1.0</td>
<td>2.0</td>
<td>14.5</td>
<td>3.0</td>
<td>2.5</td>
<td>-</td>
</tr>
<tr>
<td>NP 3.5</td>
<td>2.6</td>
<td>1.0</td>
<td>7.0</td>
<td>1.2</td>
<td>2.4</td>
<td>8.0</td>
<td>3.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1.0</td>
<td>8.5</td>
<td>1.2</td>
<td>2.4</td>
<td>9.5</td>
<td>3.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1.0</td>
<td>10.0</td>
<td>1.2</td>
<td>2.4</td>
<td>11.0</td>
<td>3.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1.0</td>
<td>11.5</td>
<td>1.2</td>
<td>2.4</td>
<td>12.5</td>
<td>3.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1.0</td>
<td>13.5</td>
<td>1.2</td>
<td>2.4</td>
<td>14.5</td>
<td>3.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>1.0</td>
<td>16.5</td>
<td>1.2</td>
<td>2.4</td>
<td>17.5</td>
<td>3.5</td>
<td>3.0</td>
<td>3.5</td>
</tr>
<tr>
<td>RP 4.3</td>
<td>3.2</td>
<td>1.0</td>
<td>7.0</td>
<td>1.2</td>
<td>2.4</td>
<td>8.0</td>
<td>4.3</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>1.0</td>
<td>8.5</td>
<td>1.2</td>
<td>2.4</td>
<td>9.5</td>
<td>4.3</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>1.0</td>
<td>10.0</td>
<td>1.2</td>
<td>2.4</td>
<td>11.0</td>
<td>4.3</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>1.0</td>
<td>11.5</td>
<td>1.2</td>
<td>2.4</td>
<td>12.5</td>
<td>4.3</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>1.0</td>
<td>13.5</td>
<td>1.2</td>
<td>2.4</td>
<td>14.5</td>
<td>4.3</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>1.0</td>
<td>16.5</td>
<td>1.2</td>
<td>2.4</td>
<td>17.5</td>
<td>4.3</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>RP 5.0</td>
<td>3.8</td>
<td>1.0</td>
<td>7.0</td>
<td>1.2</td>
<td>2.4</td>
<td>8.0</td>
<td>4.9</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1.0</td>
<td>8.5</td>
<td>1.2</td>
<td>2.4</td>
<td>9.5</td>
<td>4.9</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1.0</td>
<td>10.0</td>
<td>1.2</td>
<td>2.4</td>
<td>11.0</td>
<td>4.9</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1.0</td>
<td>11.5</td>
<td>1.2</td>
<td>2.4</td>
<td>12.5</td>
<td>4.9</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1.0</td>
<td>13.5</td>
<td>1.2</td>
<td>2.4</td>
<td>14.5</td>
<td>4.9</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>1.0</td>
<td>16.5</td>
<td>1.2</td>
<td>2.4</td>
<td>17.5</td>
<td>4.9</td>
<td>3.4</td>
<td>3.9</td>
</tr>
<tr>
<td>WP 5.5</td>
<td>4.0</td>
<td>1.0</td>
<td>5.5</td>
<td>1.2</td>
<td>2.4</td>
<td>6.5</td>
<td>5.5</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1.0</td>
<td>7.0</td>
<td>1.2</td>
<td>2.4</td>
<td>8.0</td>
<td>5.5</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1.0</td>
<td>8.5</td>
<td>1.2</td>
<td>2.4</td>
<td>9.5</td>
<td>5.5</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1.0</td>
<td>10.0</td>
<td>1.2</td>
<td>2.4</td>
<td>11.0</td>
<td>5.5</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1.0</td>
<td>11.5</td>
<td>1.2</td>
<td>2.4</td>
<td>12.5</td>
<td>5.5</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>1.0</td>
<td>13.5</td>
<td>1.2</td>
<td>2.4</td>
<td>14.5</td>
<td>5.5</td>
<td>4.4</td>
<td>5.1</td>
</tr>
</tbody>
</table>

All measurements in mm.

* The implants move twice the thread spacing with each rotation.
Important considerations

Implant placement
The unique thread design allows the implant to be redirected during insertion. This needs special attention during placement, as the implant will not necessarily stop at the bottom of the prepared site.

Available abutment margin height needs to be considered during the planning of implant placement to assure appropriate seating depth of the implant relative to the available soft tissue thickness and the planned emergence of the restoration.

Insertion speed
The innovative thread pitch allows the implant to be inserted up to four times faster than other implants. This means that significantly fewer rotations are required to fully seat the implant.

Implant insertion with manual driver
If the Surgical Driver (manual hand device) is used to insert the implant, special attention is required to avoid overtightening.

Multiple-unit restorations
When restoring with a NobelProcera Implant Bridge, or any other full-arch solution, a unique set of “Bridge” components must be used for placement, uncovering and impression taking. The “Bridge” components ensure soft-tissue management around the prosthetic platform for optimal prosthetic seating.

Indications and requirements for NobelActive 3.0
NobelActive 3.0 is only indicated for the replacement of single-unit maxillary lateral incisors and single-unit mandibular lateral and central incisors. Multiple-unit restorative options are not indicated nor accommodated by restorative components.

Never exceed an implant insertion torque of 45 Ncm and do not exceed 15 Ncm of torque with any prosthetic component.
Surgical access

Standard flap procedure
Used when it is necessary:
- to observe the underlying alveolar bone and adjacent anatomical structures.
- to place bone and/or connective tissue grafts.

Flapless procedure
May be used when:
- there is sufficient quantity and quality of alveolar bone and soft tissue.
- it is not necessary to raise a flap to safely direct drilling procedure in relation to the anatomy.

Notes:
- When using a flapless approach, add soft tissue height to drill depth.
- Confirm available bone and significant anatomical landmarks, such as blood vessels, nerves and concavities. Use conventional diagnostic tools, such as radiographic imaging, probing and palpation, and 3D imaging if indicated.
Drills are made of stainless steel with a diamond-like carbon (DLC) coating, which gives them their black color. They are used with external irrigation and are available in three lengths: 7–10 mm, 7–15 mm and 10–18 mm.

– Use an in-and-out motion and drill the bone for 1–2 seconds.
– Move the drill up without stopping the handpiece motor. This allows the irrigation to flush away debris.
– Proceed until the desired depth reference line is reached.
– Screw Taps are available for dense bone situations to avoid excessive torque during implant insertion (max. 70 Ncm for NP, RP, and WP and 45 Ncm for 3.0 implants).

Notes:
– Stop drilling if there is no irrigation.
– When using a drill extension shaft, it is important to supplement cooling at the tip of the drill with manual irrigation.
– Drills are delivered sterile and are for single use only. Do not re-sterilize disposable drills.
– Screw Taps are delivered sterile and for multiple use. Re-sterilize according to cleaning and sterilization guidelines.

Caution: The drill preparation is up to 1 mm longer than the implant. Allow for this additional length when drilling near vital anatomical structures.

All measurements from the tip of the drill to the bottom edge of the marking.

Depth measurement system
All drills and components are marked to prepare the site to the correct depth and obtain a secure and predictable position. The marks on the twist drills indicate actual millimeter lengths and correspond to the top of the implant collar.

Final vertical positioning depends on several clinical parameters such as:
– Esthetics
– Tissue thickness
– Available vertical height
– Flapless procedure: Measure soft tissue thickness with a probe. Add tissue thickness to drilling depth for correct site preparation.
Drill protocols according to bone quality*

Recommended to ensure optimal primary implant stability when planning for Immediate Function.

<table>
<thead>
<tr>
<th>Platform</th>
<th>Ø Implant</th>
<th>Soft Bone Type IV</th>
<th>Medium Bone Type II-III</th>
<th>Dense Bone Type I</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0</td>
<td>Ø 3.0</td>
<td>1.5</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td>NP</td>
<td>Ø 3.5</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8/3.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2.4/2.8)</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.8/3.2</td>
</tr>
<tr>
<td>RP</td>
<td>Ø 4.3</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2/3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2/3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2/3.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8/4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8/4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.8/4.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.0</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.4/2.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.2/5.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Screw Tap</td>
</tr>
</tbody>
</table>

Note: All data is stated in mm.
Drills within brackets (---) denote widening of the cortex only, not drilling to the full drilling depth.

Soft bone considerations

The self-drilling capability of NobelActive allows it to be inserted into sites that have been prepared to a reduced depth. This ability becomes very useful in situations that are in close proximity to vital anatomical structures, or in softer bone when maximum condensation is desirable. Drill to 2–4 mm less than the total implant length, insert implant to drilled depth and continue to insert. The implant will drill its way to final depth.

Dense bone considerations

– Self-drilling should not be attempted in dense bone.
– Screw Taps should be used if the standard dense bone protocol is not sufficient to fully seat the implant without exceeding the recommended maximum insertion torque (max. 70 Ncm for NP, RP and WP and 45 Ncm for 3.0 implants).

Flapless procedure
Choose between the following two options and continue with the drill sequence on page 15, starting with step 3.

Option A
– Drill to the appropriate depth using the Twist Drill with Tip Ø 2 mm. A drill stop can be used.

Maximum speed 2000 rpm

Note: Measure the soft tissue thickness with a probe. Add this tissue thickness to the drilling depth for correct site preparation. Be aware of anatomical landmarks.

Option B
– To facilitate initial soft tissue penetration and creation of a crestal starting point (also after flap preparation), the Precision Drill can be used before Twist Drill with Tip Ø 2 mm.
– Drill with the precision drill through soft tissue and into the alveolar crest.

Maximum speed 2000 rpm
Flap procedure
The following illustrations show the drill sequence for NobelActive RP 4.3 in medium and dense bone. For other implant diameters and bone densities, see page 13. For specific information regarding NobelActive 3.0, see page 21.

1 **Raise a flap**
When using a flap procedure, make an incision and raise a flap.

2 **Drill with Precision Drill**
To facilitate creation of a crestal starting point, the Precision Drill can be used before Twist Drill with Tip Ø 2.0mm.

 Maximum speed 2000 rpm

3 **Drill with Twist Drill with Tip Ø 2mm**
Drill to the appropriate depth using the Twist Drill with Tip Ø 2mm. A drill stop can be used.

 Maximum speed 2000 rpm

4 **Check osteotomy direction**
Check correct direction using Direction Indicator Ø 2.0/2.4–2.8 mm.

 Notes:
 - If applicable, take a radiograph to verify correct direction.
 - When placing multiple implants, proceed to the next implant site before continuing to the next drill sequence.

5 **Drill with Twist Step Drills**
 - Continue site preparation using Twist Step Drill Ø 2.4/2.8 mm.
 - Check orientation using Direction Indicator Ø 2.0/2.4–2.8 mm.
 - Finalize site preparation using Twist Step Drill Ø 3.2/3.6 mm.

 Maximum speed 2000 rpm
6 Determine implant length
Use Depth Probe to verify the desired depth has been achieved (including soft tissue thickness, if applicable).

7 For dense bone only: widen cortex
Widen cortex to full cortex depth using Twist Step Drill Ø 3.8/4.2 mm. Do not drill to full drilling depth.

Maximum speed 2000 rpm

8 Use of Screw Tap in dense bone
- Place Screw Tap RP 4.3 into prepared implant site using low speed (25 rpm).
- Apply firm pressure and begin rotating the Screw Tap slowly. When the threads engage, allow Screw Tap to feed without pressure to defined depth (until all threads on the Screw Tap have engaged bone).
- Switch the handpiece to reverse mode and back the screw tap out.

Low speed 25 rpm

Note: The Screw Tap WP 5.5 11.5–15 mm has a special depth marking indicating the defined depth.
1 Unpack implant

Each implant is packaged in a double aseptic vial system. The outer package has a printed label with product data including diameter and length. Its cap is color-coded to identify the implant diameter. The inner titanium casing is also marked with implant platform and size.

- Pull the red tab to disengage the plastic shrink-wrap film and unscrew the color-coded lid.
- Take out the sterile inner titanium casing and lift off the plastic cap to gain access to implant.
- Record the implant size and LOT number on the patient’s chart with the two peel-off labels from the outer vial.

2 Choose insertion instrument

Depending on the clinical situation and accessibility, there are three different options for inserting the implant:

A With a NobelActive Manual Torque Wrench Surgical
B With a Surgical Driver
C With a drilling unit and contra-angle

Notes:

- In the anterior region it is recommended to use the manual surgical driver to facilitate good control during insertion and angulation changes.
- The surgical driver is intended to be used while grasped with finger tips only to avoid excessive insertion torque.
- It is possible to start the implant insertion manually, using the NobelActive Implant Driver and Surgical Wrench Adapter.
- For NobelActive 3.0, the NobelReplace Manual Torque Wrench Surgical or the Manual Torque Wrench Prosthetic with Surgical Wrench Adapter can also be used, as they both have a 45Ncm marking.

Caution: Overtightening an implant may lead to damage of the implant, fracture or necrosis of the bone site. If a Surgical Driver is used to insert the implant, special care needs to be taken to avoid overtightening.
3 Pick up implant
- Connect the appropriate implant driver to the insertion instrument.
- Pick up the implant from the inner casing by applying light pressure on the implant driver and carefully turning the casing counterclockwise until implant driver is fully seated.

Tip: The implant drivers have markings to facilitate the insertion of the driver into the implant.

Caution: Make sure that the implant driver is fully seated.

4 Insert implant
- Begin inserting the implant into the osteotomy.
- When using a drilling unit, start inserting the implant using low speed: max 25 rpm.

Caution:
- The maximum insertion torque for NP, RP and WP implants is 70 Ncm and may be measured with the NobelActive Manual Torque Wrench Surgical. For NobelActive 3.0 never exceed an insertion torque of 45 Ncm.
- The surgical driver is designed to be used while grasped with finger pressure only. Use of full palm grip can yield over 200 Ncm insertion torque.
- Overtightening an implant may lead to damage of the implant, fracture or necrosis of the bone site. If a Surgical Driver is used to insert the implant, special care needs to be taken to avoid overtightening.

Low speed 25 rpm Max. torque 70 Ncm
5 Tighten manually

- Connect the NobelActive Manual Torque Wrench Surgical to the Manual Torque Wrench Adapter and place the implant to final depth.
- For Immediate Function, the implant should withstand a final insertion torque of at least 35 Ncm. Do not exceed 70 Ncm for NP, RP and WP implants and 45 Ncm for NobelActive 3.0.
- Remove driver with an easy upward motion.

If experiencing strong resistance

Excessive torque while inserting the implant must be avoided. It can cause deformation of the implant or connection and may result in excessive compression of the bone.

- If strong resistance (max. 70 Ncm for NP, RP and WP and 45 Ncm for 3.0 implants) is encountered at any point during insertion, rotate the implant counterclockwise approximately a 1/2 turn to enable the self-tapping capacity of the implant, then continue to insert the implant.
- If there is still strong resistance, remove the implant and place it back into the titanium casing. Widen the implant site according to the drill protocol or use Screw Tap matching the diameter of the implant.
6 Final implant placement

- Available abutment margin height needs to be considered during the planning of implant placement to assure appropriate seating depth of the implant relative to the available soft tissue thickness and the planned emergence of the restoration.
- For maximum esthetic results place the implant between 0–1 mm below buccal bone.
- When placing the implant, align one of the black hex indicators on the implant driver parallel to the buccal wall. This ensures that one of the flat sides of the hexagon is parallel to the buccal side, ensuring preferred prosthetic abutment orientation.

Notes:
- The implant driver has a 3 mm height indicator to facilitate vertical implant positioning.
- If the implant driver is difficult to remove, slightly rotate it counterclockwise before lifting it up.
Indications
– Lateral incisors in the maxilla
– Lateral and central incisors in the mandible
– Single-unit applications in the above-mentioned positions

1 Prepare implant site
Prepare the implant site according to drill protocol (see page 13).

2 Pick up implant
Open the implant package and pick up the implant from the inner casing with the implant driver for NobelActive 3.0.

3 Place and tighten implant
– Insert the implant with low speed, maximum 15 rpm, using drilling machine or by hand using Manual Torque Wrench Surgical.
– Tighten the implant with an insertion torque of maximum 45 Ncm (see marking on torque wrench). For Immediate Function a minimum installation torque of 35 Ncm is required.

If experiencing strong resistance
Excessive torque while inserting the implant must be avoided. It can cause deformation of the implant or connection and may result in excessive compression of the bone.
– If strong resistance (max. 45 Ncm) is encountered at any point during insertion, rotate the implant counterclockwise approximately 1/2 a turn to enable the self-tapping capacity of the implant, then continue to insert the implant.
– If there is still strong resistance, remove the implant and place it back into the titanium casing. Widen the implant site according to the drill protocol or use Screw Tap matching the diameter of the implant.

Note: For NobelActive 3.0, the NobelReplace Manual Torque Wrench Surgical or the Manual Torque Wrench Prosthetic with Surgical Wrench Adapter can also be used, as they both have a 45 Ncm marking.

4 Temporary restoration
Depending on the surgical protocol of choice, place a cover screw or abutment and suture.

Caution: All prosthetic components for NobelActive 3.0 must be tightened to 15 Ncm only using a Screwdriver Machine Unigrip and Manual Torque Wrench Prosthetic. Overtightening may lead to screw fracture.
The self-drilling capacity of NobelActive makes it possible to change direction of the implant during implant placement. This helps to facilitate parallelism between implants and optimize implant placement in the anterior zone.

If a further change in implant alignment is desired after placing the implant:

- Reverse 2–3 turns.
- Start to insert the implant into the new direction as described previously. Do not exceed 70 Ncm for NP, RP and WP and 45 Ncm for 3.0 implants.
- Continue the insertion until the implant is fully seated in the desired position.

If experiencing strong resistance

Excessive torque while inserting the implant must be avoided. It can cause deformation of the implant or connection and may result in excessive compression of the bone.

- If strong resistance (max. 70 Ncm for NP, RP and WP and 45 Ncm for 3.0 implants) is encountered at any point during insertion, rotate the implant counter-clockwise approximately 1/2 turn to enable the self-tapping capacity of the implant, then continue to insert the implant.
- If there is still strong resistance, remove the implant and place it back into the titanium casing. Widen the implant site according to the drill protocol or use Screw Tap matching the diameter of the implant.
Stabilization in wide sockets

Due to the special design of the NobelActive implant, it is possible to insert it into underprepared sites allowing the bone condensing feature of the implant to take effect.

Notes:
- In these situations, a one-stage or Immediate Function surgical approach is not recommended.
- NobelActive 3.0 implants are not indicated for posterior use.
- NobelActive NP implants are not recommended for posterior use.

- Drill apically in the extraction socket, using Twist Drill with Tip Ø 2 mm or Precision Drill.
- Depending on the diameter of the implant and the bone density, continue site preparation following the drill protocol.
- Start inserting the implant into the under-prepared site as described previously. Do not exceed 70 Ncm. Due to the unique thread design and bone-condensing capacity, sufficient retention and stabilization may be achieved.
- Bone augmentation may immediately follow implant placement if indicated.
- Place a cover screw and suture.

If experiencing strong resistance

Excessive torque while inserting the implant must be avoided. It can cause deformation of the implant or connection and may result in excessive compression of the bone.

- If strong resistance (max. 70 Ncm for NP, RP and WP implants) is encountered at any point during insertion, rotate the implant counter-clockwise approximately 1/2 a turn to enable the self-tapping capacity of the implant, then continue to insert the implant.
- If there is still strong resistance, remove the implant and place it back into the titanium casing. Widen the implant site according to the drill protocol or use Screw Tap matching the diameter of the implant.
Achieving esthetic results in the anterior can be challenging. The buccal bone plate is usually very thin and often missing entirely, and maintaining bone height and soft tissue architecture requires at least 1.5 mm of bone thickness buccal to the implant.

In order to achieve the desired results, bone augmentation must often be performed prior to implant placement. In many cases NobelActive simplifies this procedure.

The implant’s ability to self drill and actively change direction allows stabilization adjacent to the palatal wall, leaving ample space for bone augmentation on the buccal aspect.

1 Option: Create starting point
For creation of a starting point in the palatal wall of the extraction socket, use the Precision Drill.

Maximum speed 2000 rpm

2 Prepare implant site
– For maxillary anterior teeth, the objective is to utilize bone palatal to the remaining socket in the apical 1/3 to 1/2 for stabilization of the implant. The palatal wall is first penetrated from a more perpendicular approach to gain a starting point with either the Precision Drill or the Twist Drill with Tip Ø 2 mm.
– Continue to drill with the Twist Drill with Tip Ø 2 mm while gradually changing the direction to a more vertical direction.
– Depending on implant diameter and bone density, continue to drill as described above, following the drill protocol.

Note: When using a flapless procedure, measure the soft tissue thickness with a probe. Add this tissue thickness to the drilling depth for correct site preparation. Be aware of anatomical landmarks.
3 Insert implant

– Begin inserting the implant at the same angle as for the initial drilling. Do not exceed 70 Ncm for NP, RP and WP and 45 Ncm for 3.0 implants.
– Continue implant insertion to final position, while gradually changing the angulation.

If experiencing strong resistance

Excessive torque while inserting the implant must be avoided. It can cause deformation of the implant or connection and may result in excessive compression of the bone.
– If strong resistance (max. 70 Ncm for NP, RP and WP and 45 Ncm for 3.0 implants) is encountered at any point during insertion, rotate the implant counter-clockwise approximately 1/2 turn to enable the self-tapping capacity of the implant, then continue to insert the implant.
– If there is still strong resistance, remove the implant and place it back into the titanium casing. Widen the implant site according to the drill protocol or use Screw Tap matching the diameter of the implant.
Important considerations

Prosthetic interface
- Restorative flexibility with dual-function prosthetic connection: internal conical connection for abutments and external platform for implant-level bridge restorations.
- Built-in platform shifting designed to optimize bone and soft tissue volume for natural-looking esthetics.

Impression coping seating
Proper seating of the impression coping is essential for a correct impression.

To verify that the impression copings are properly seated, check that the groove on the impression coping sits right at the level of the implant shoulder. Use a perpendicular radiograph if necessary.
Abutment seating
Correct positioning of the abutment is essential for the prosthetic outcome and long-lasting function. Verify correct vertical abutment seating by using radiographic imaging.

- Position the abutment into the implant head and make sure the hexagonal extension engages properly by gently turning and pushing.
- Make sure the abutment feels securely placed, both horizontally and vertically.
- Tighten the screw, but not to full torque.
- Take a radiograph to verify proper and full abutment seating:
 - No apparent bone interference
 - Alignment of long axes of implant and abutment
 - No gap in conical interface
- Space at the bottom of the connection should appear parallel and measure less than 1 mm.
- Tighten the abutment screw to final torque. Tightening torque for NP, RP and WP abutments is 35 Ncm and for 3.0 abutments 15 Ncm.

Examples

Examples 1

Abutment not fully seated due to interfering bone. Long axis are not aligned. Gap in conical interface. Bottom space is not parallel and is larger than 1 mm.

Abutment fully seated. All above parameters are verified.

Examples 2

Abutment seems to be aligned with implant but space is larger than 1 mm.

Abutment is fully seated.
Finalization of implant surgery and temporary restorations

There are three options for finalizing the implant surgery.

Two-stage delayed function
Use Screwdriver Unigrip to connect a cover screw to the implant. Suture the tissue flap using the desired technique.

One-stage delayed function
Use Screwdriver Unigrip to connect a healing abutment to the implant. If applicable, suture back the soft tissue.

One-stage Immediate Function
Provisionalize the implant for immediate esthetics and function, using Nobel Biocare temporary or final abutments.

Note: If the final restoration is an implant-level NobelProcera Implant Bridge or a non-engaging GoldAdapt Abutment, use a Healing Abutment Bridge to prevent tissue overgrowth on the horizontal implant platform.
Two-stage delayed function

1 Uncover the implant
- Make an incision to expose the cover screw or use the Soft Tissue Punch if there is a sufficient amount of attached mucosa.
- Remove the cover screw using a Screwdriver Manual Unigrip.

2 Remove bone overgrowth
- Should bone grow over the cover screw, remove the bone with a rotating instrument and/or a curette. Be careful not to damage the seating for the Screwdriver Manual Unigrip.
- After removing the cover screw, remove any bone around the implant platform that will hinder an abutment being fully seated on the implant platform. This is often the case when the implant has been placed below the bone crest. For bone removal, use the Bone Mill Guide and Bone Mill for the corresponding platform.
- The bone mill can be handled either manually (with the handle for machine instruments) or with the drilling unit.

3 Connect healing abutment
- Connect a suitable healing abutment to the implant using the Screwdriver Manual Unigrip.
- If a flap is prepared, suture back the soft tissue.

Alternative: If possible, connect the final abutment using the corresponding screwdriver.
One-stage Immediate Function procedures
Temporary single-unit restoration, cement-retained
(chairside procedure)

The following illustrations show the use of the Immediate Temporary Abutment.

 Provisionalization must be done in Immediate Function cases and is a common option for altering the soft tissue after a healing abutment has been used (soft tissue management).

1 Connect abutment to implant
– Attach the abutment onto the implant and tighten with the Screwdriver Machine Multi-unit and the Manual Torque Wrench Prosthetic.
– If the implant rotates while tightening the abutment, re-evaluate primary stability of the implant and consider submerged healing.

Caution: Tightening torque for NP and RP abutments is 35 Ncm and for 3.0 abutments 15 Ncm.

2 Adjust the abutment
– Adjust the abutment for height and clearance if necessary.
– Try in the plastic coping (supplied with the abutment) and relieve for clearance if necessary.

3 Fabricate and cement temporary crown
– Fabricate a temporary crown using traditional methods with either acrylic or composite.
– If the laboratory has made a prefabricated provisional crown, adjust it and reline it to the abutment.
– Cement using temporary cement.

Warning: Do not use polyurethane cement with plastic/ temporary copings; the cement will not cure.

Caution: In a fresh/open wound, avoid getting any cement below the soft tissue or remove it carefully. Consider using a rubber dam or other options to prevent excess cement.
Temporary multiple-unit restoration, cement-retained (chairside procedure)

The following illustrations show the use of the QuickTemp Abutment Conical.

Provisionalization must be done in Immediate Function cases and is a common option for altering the soft tissue after a healing abutment has been used (soft tissue management).

1 Connect abutments to implants
Attach the abutments onto the implants and tighten to 35 Ncm with the Screwdriver Unigrip and Manual Torque Wrench Prosthetic.

2 Try in plastic copings
Try in the plastic copings; they should securely snap onto the abutments.

3 Make a temporary bridge
– Fabricate a temporary bridge using traditional methods with either acrylic or composite.
– If the laboratory has made a pre-fabricated provisional bridge, adjust it and reline it to the abutments.

4 Cement bridge on abutments
Cement using temporary cement.

Warning: Do not use polyurethane cement with plastic/temporary copings; the cement will not cure.

Caution: In a fresh/open wound, avoid getting any cement below the soft tissue or remove it carefully. Consider using a rubber dam or other options to prevent excess cement.
Temporary multiple-unit restoration, screw-retained (chairside procedure)

The following illustrations show the use of the Temporary Abutment Non-Engaging (for multiple splinted restorations). For individual implants, use engaging abutments.

Provisionalization must be done in Immediate Function cases and is a common option for altering the soft tissue after a healing abutment has been used (soft tissue management).

1 Connect abutments to implants
– Attach the abutments onto the implants and adjust for height and clearance if necessary.
– Fasten the abutments with guide pins that extend beyond the occlusal plane with the Screwdriver Manual Unigrip.

Note: Abutment screw is included with the abutment. The guide pin (available in two lengths: 20mm [standard length] and 30mm) has to be ordered separately.

2 Make acrylic template
– Fabricate the template from acrylic or composite for chairside temporization.
– Make access holes to allow guide pins to protrude.
– If the laboratory has made a prefabricated provisional bridge, make access holes to allow the guide pins to protrude (if not already done) and adjust it to the abutments.
– Fill template with acrylic or composite and seat it over the temporary abutments.

3 Adjust temporary restoration
– After seating, loosen the guide pins to remove the restoration.
– Trim and polish the restoration. It is important to have a smooth surface adjacent to the surrounding soft tissue.

4 Connect temporary restoration
– Connect the provisional restoration with the supplied abutment screws.
– Fill the screw access holes with suitable material.

Note: For single-unit restorations with 3.0 implants, the max tightening torque is 15Ncm.
Temporary single-unit restoration, cement-retained (chairside procedure)

The following illustrations show the use of the PEEK Temporary Abutment.

Provisionalization must be done in Immediate Function cases and is a common option for altering the soft tissue after a healing abutment has been used (soft tissue management)

1 **Connect abutment to implant and modify if necessary**
 - Attach the abutment onto the implant and tighten with the Unigrip Screwdriver.
 - If necessary, modify the abutment for vertical clearance and gingival margins using a carbide or acrylic bur.

2 **Block the screw access hole**
 Place a resilient material of choice (gutta-percha, silicone or temporary filling material) into the screw access hole and fill the remaining channel with composite or another material of choice. This allows for easy access to the abutment screw in the future.
 Apply a separating solution onto the plastic abutment in preparation for fabricating the temporary crown.

3 **Fabricate temporary crown**
 - Try the shell crown in and modify following conventional procedures.
 - Fill the shell crown with acrylic in preparation for doing a reline.
 - Remove the excess acrylic and polish

4 **Cement the temporary crown**
 Make final adjustments, polish and secure with temporary cement

Caution: In a fresh/open wound, avoid getting any cement below the soft tissue or remove it carefully. Consider using a rubber dam or other options to prevent excess cement.
Flowcharts

NobelActive® 3.0

<table>
<thead>
<tr>
<th>Length mm</th>
<th>10</th>
<th>11.5</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.0 mm</td>
<td>36769</td>
<td>36770</td>
<td>36771</td>
<td>36772</td>
</tr>
</tbody>
</table>

Cover screw not included
Platform 3.0 mm
Abutment interface 2.5 mm

NobelActive® NP

<table>
<thead>
<tr>
<th>Length mm</th>
<th>8.5</th>
<th>10</th>
<th>11.5</th>
<th>13</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.5 mm</td>
<td>35221</td>
<td>34125</td>
<td>34126</td>
<td>34127</td>
<td>34128</td>
<td>35215</td>
</tr>
</tbody>
</table>

Cover screw not included
Platform 3.5 mm
Abutment interface 3.0 mm

Drill

- Precision Drill: 36118

Drill Stop

- Ø 2 mm: 33063
- Ø 2.8 mm: 33064

Twist Drill

- Ø 1.5, 7–15 mm: 31278
- Ø 2, 7–15 mm: 32297
- Ø 2, 10–18 mm: 32299

Twist Step Drill

- Ø 2.4/2.8, 7–15 mm: 32261
- Ø 2.4/2.8, 10–18 mm: 32262
NobelActive® Manual // Product information

Implant Driver
- 3.0 \(\text{mm}\) 36816
- 3.0 28 \(\text{mm}\) 36773
- 3.0 37 \(\text{mm}\) 36774

Healing Abutment

<table>
<thead>
<tr>
<th>Height (\text{mm})</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.2 (\text{mm})</td>
<td>36794</td>
<td>36795</td>
<td>36796</td>
</tr>
<tr>
<td>Ø 3.8 (\text{mm})</td>
<td>36797</td>
<td>36798</td>
<td>36799</td>
</tr>
</tbody>
</table>

Cover Screw
- NP 36236
- NP 28 \(\text{mm}\) 36718
- NP 37 \(\text{mm}\) 36719

Healing Abutment Bridge*

<table>
<thead>
<tr>
<th>Height (\text{mm})</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 4.0 (\text{mm})</td>
<td>36864</td>
<td>36865</td>
<td>36866</td>
</tr>
</tbody>
</table>

Cover Screw
- NP 36649

* Used for multiple-unit restorations with NobelProcera Implant Bridge and GoldAdapt Non-Engaging.
NobelActive® RP

<table>
<thead>
<tr>
<th>Length mm</th>
<th>8.5</th>
<th>10</th>
<th>11.5</th>
<th>13</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 4.3 mm</td>
<td>35223</td>
<td>34131</td>
<td>34132</td>
<td>34133</td>
<td>34134</td>
<td>35219</td>
</tr>
</tbody>
</table>

- Cover screw not included
- Platform 3.9 mm
- Abutment interface 3.4 mm

Drill

Precision Drill
- Ø 2 mm: 33063
- Ø 2.8 mm: 33064
- Ø 3.2 mm: 33077
- Ø 3.6 mm: 33084
- Ø 4.2 mm: 33081

Twist Drill
- Ø 2, 7–10 mm: 32296
- Ø 2, 7–15 mm: 32297
- Ø 2, 10–18 mm: 32299

Twist Step Drill
- Ø 2.4/2.8, 7–10 mm: 32260
- Ø 2.4/2.8, 7–15 mm: 32261
- Ø 2.4/2.8, 10–18 mm: 32262
- Ø 2.8/3.2, 7–10 mm: 37873
- Ø 2.8/3.2, 7–15 mm: 34638
- Ø 2.8/3.2, 10–18 mm: 34639
- Ø 3.2/3.6, 7–10 mm: 32263
- Ø 3.2/3.6, 7–15 mm: 32264
- Ø 3.2/3.6, 10–18 mm: 32265
- Ø 3.8/4.2, 7–10 mm: 32275
- Ø 3.8/4.2, 7–15 mm: 32276
- Ø 3.8/4.2, 10–18 mm: 32277
NobelActive® Manual // Product Information

<table>
<thead>
<tr>
<th>Screw Tap</th>
<th>Implant Driver</th>
<th>Healing Abutment</th>
<th>Cover Screw</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP 4.3 36237</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP 28 mm 36720</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RP 37 mm 36721</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Healing Abutment

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.6 mm</td>
<td>36643</td>
<td>36644</td>
<td>36872</td>
</tr>
<tr>
<td>Ø 5.0 mm</td>
<td>36645</td>
<td>36646</td>
<td>36873</td>
</tr>
<tr>
<td>Ø 6.0 mm</td>
<td>36647</td>
<td>36648</td>
<td>36874</td>
</tr>
</tbody>
</table>

Healing Abutment Bridge*

<table>
<thead>
<tr>
<th>Height (mm)</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 5.0 mm</td>
<td>36869</td>
<td>36870</td>
<td>36871</td>
</tr>
</tbody>
</table>

Cover Screw

<table>
<thead>
<tr>
<th>RP</th>
<th>36650</th>
</tr>
</thead>
</table>

*Used for multiple-unit restorations with NobelProcera Implant Bridge and GoldAdapt Non-Engaging.
Implant

NobelActive® RP

<table>
<thead>
<tr>
<th>Length mm</th>
<th>8.5</th>
<th>10</th>
<th>11.5</th>
<th>13</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 5.0 mm</td>
<td>35225</td>
<td>34137</td>
<td>34138</td>
<td>34139</td>
<td>34140</td>
<td>35220</td>
</tr>
</tbody>
</table>

Cover screw not included
Platform 3.9 mm
Abutment interface 3.4 mm

Drill

Twist Drill

<table>
<thead>
<tr>
<th>Ø, mm</th>
<th>2, 7–10 mm</th>
<th>2, 7–15 mm</th>
<th>2, 10–18 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 2 mm</td>
<td>32296</td>
<td>32297</td>
<td>32299</td>
</tr>
</tbody>
</table>

Twist Step Drill

<table>
<thead>
<tr>
<th>Ø, mm</th>
<th>2.4/2.8, 7–10 mm</th>
<th>2.4/2.8, 7–15 mm</th>
<th>2.4/2.8, 10–18 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.2/3.6</td>
<td>32263</td>
<td>32264</td>
<td>32265</td>
</tr>
<tr>
<td>Ø 3.8/4.2, 7–10 mm</td>
<td>32275</td>
<td>32276</td>
<td>32277</td>
</tr>
<tr>
<td>Ø 4.2/4.6, 7–10 mm</td>
<td>37874</td>
<td>34582</td>
<td>34583</td>
</tr>
</tbody>
</table>

Drill Stop

<table>
<thead>
<tr>
<th>Ø, mm</th>
<th>2</th>
<th>2.8</th>
<th>3.6</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 2 mm</td>
<td>33063</td>
<td>33064</td>
<td>33084</td>
<td>33081</td>
</tr>
<tr>
<td>Ø 2.8 mm</td>
<td>33064</td>
<td>33084</td>
<td>33081</td>
<td>33081</td>
</tr>
<tr>
<td>Ø 3.6 mm</td>
<td>33084</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
</tr>
<tr>
<td>Ø 4.2 mm</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
</tr>
</tbody>
</table>

Precision Drill

<table>
<thead>
<tr>
<th>Ø, mm</th>
<th>2</th>
<th>2.8</th>
<th>3.6</th>
<th>4.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 2 mm</td>
<td>33063</td>
<td>33084</td>
<td>33081</td>
<td>33081</td>
</tr>
<tr>
<td>Ø 2.8 mm</td>
<td>33084</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
</tr>
<tr>
<td>Ø 3.6 mm</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
</tr>
<tr>
<td>Ø 4.2 mm</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
<td>33081</td>
</tr>
</tbody>
</table>
Screw Tap
- RP 5.0 36238
- RP 28 mm 36720
- RP 37 mm 36721

Implant Driver

Healing Abutment
Cover Screw
- RP 36650

Healing Abutment
<table>
<thead>
<tr>
<th>Height mm</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 3.6 mm</td>
<td>36643</td>
<td>36644</td>
<td>36872</td>
</tr>
<tr>
<td>Ø 5.0 mm</td>
<td>36645</td>
<td>36646</td>
<td>36873</td>
</tr>
<tr>
<td>Ø 6.0 mm</td>
<td>36647</td>
<td>36648</td>
<td>36874</td>
</tr>
</tbody>
</table>

Healing Abutment Bridge*
<table>
<thead>
<tr>
<th>Height mm</th>
<th>3</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 5.0 mm</td>
<td>36869</td>
<td>36870</td>
<td>36871</td>
</tr>
</tbody>
</table>

* Used for multiple-unit restorations with NobelProcera Implant Bridge and GoldAdapt Non-Engaging.
NobelActive® WP

Length mm
7 8.5 10 11.5 13 15
Ø 5.5 mm 37806 37807 37808 37809 37810 37811

- Cover screw included
- Platform 5.1 mm
- Abutment interface 4.4 mm

Drill

<table>
<thead>
<tr>
<th>Ø</th>
<th>Length</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5 mm</td>
<td>7</td>
<td>37806</td>
</tr>
<tr>
<td></td>
<td>8.5</td>
<td>37807</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>37808</td>
</tr>
<tr>
<td></td>
<td>11.5</td>
<td>37809</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>37810</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>37811</td>
</tr>
</tbody>
</table>

Twist Drill

<table>
<thead>
<tr>
<th>Ø</th>
<th>Length</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7–10 mm</td>
<td>32296</td>
</tr>
<tr>
<td>2</td>
<td>7–15 mm</td>
<td>32297</td>
</tr>
</tbody>
</table>

Twist Step Drill

<table>
<thead>
<tr>
<th>Ø</th>
<th>Length</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4/2.8</td>
<td>7–10 mm</td>
<td>32260</td>
</tr>
<tr>
<td>2.4/2.8</td>
<td>7–15 mm</td>
<td>32261</td>
</tr>
<tr>
<td>3.2/3.6</td>
<td>7–10 mm</td>
<td>32263</td>
</tr>
<tr>
<td>3.2/3.6</td>
<td>7–15 mm</td>
<td>32264</td>
</tr>
<tr>
<td>3.8/4.2</td>
<td>7–10 mm</td>
<td>32275</td>
</tr>
<tr>
<td>3.8/4.2</td>
<td>7–15 mm</td>
<td>32276</td>
</tr>
<tr>
<td>4.2/4.6</td>
<td>7–10 mm</td>
<td>37874</td>
</tr>
<tr>
<td>4.2/4.6</td>
<td>7–15 mm</td>
<td>34582</td>
</tr>
<tr>
<td>4.2/5.0</td>
<td>7–10 mm</td>
<td>37875</td>
</tr>
<tr>
<td>4.2/5.0</td>
<td>7–15 mm</td>
<td>37876</td>
</tr>
</tbody>
</table>

Drill Stop

<table>
<thead>
<tr>
<th>Ø</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm</td>
<td>33063</td>
</tr>
<tr>
<td>2.8 mm</td>
<td>33064</td>
</tr>
<tr>
<td>3.6 mm</td>
<td>33084</td>
</tr>
<tr>
<td>4.2 mm</td>
<td>33081</td>
</tr>
</tbody>
</table>
Screw Tap

- WP 5.5, 7–10 mm 37871
- WP 5.5, 11.5–15 mm 37872

Implant Driver

- WP 28 mm 37869
- WP 37 mm 37860

Healing Abutment

Cover Screw

Healing Abutment

<table>
<thead>
<tr>
<th>Height mm</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 5.0 mm</td>
<td>37813</td>
<td>37814</td>
</tr>
<tr>
<td>Ø 6.5 mm</td>
<td>37815</td>
<td>37816</td>
</tr>
</tbody>
</table>

Healing Abutment Anatomical PEEK

- WP 6×7 mm 37819
- WP 7×8 mm 37820

Healing Abutment Bridge*

<table>
<thead>
<tr>
<th>Height mm</th>
<th>3</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 6.0 mm</td>
<td>37817</td>
<td>37818</td>
</tr>
</tbody>
</table>

Cover Screw

- WP 37812

Used for multiple-unit restorations with NobelProcera Implant Bridge and GoldAdapt Non-Engaging.
Surgery kits

37883 NobelActive® Surgery Kit

* Article not included in this kit (drills also available in other lengths).
NobelActive® Surgery Kit 37883
(The articles below can also be purchased individually.)

Kit includes

- NobelActive® Surgery Kit Box 37884
- Implant Driver Conical Connection 3.0 28 mm 36773
- Implant Driver Conical Connection 3.0 37 mm 36774
- Implant Driver Conical Connection NP 28 mm 36718
- Implant Driver Conical Connection NP 37 mm 36719
- Implant Driver Conical Connection RP 28 mm 36720
- Implant Driver Conical Connection RP 37 mm 36721
- Implant Driver Conical Connection WP 28 mm 37859
- Implant Driver Conical Connection WP 37 mm 37860
- Screwdriver Manual Unigrip™ 28 mm 29149
- Drill Extension Shaft 29164
- Direction Indicator Ø2/Ø2.4–2.8 mm × 4 32112
- Implant/Prosthetic Organizer 29532
- NobelActive® Manual Torque Wrench Surgical 34584
- Depth Probe 7–18 mm Z-shaped 37791
- Implant Sleeve Holder 29543
- Surgical Driver 32180
- NobelActive® Radiographic Template 37787
- NobelActive® Wall Chart 37886

Note: Drills and Screw Taps are available for separate purchase and are not included in the kit.

Bone Mill Kit Conical Connection 37888

Kit includes

- Bone Mill Kit Box Conical Connection 37889
- Bone Mill with Guide Conical Connection 3.0 Ø4.0 37861
- Bone Mill with Guide Conical Connection NP Ø4.4 37863
- Bone Mill with Guide Conical Connection NP Ø5.2 37864
- Bone Mill with Guide Conical Connection RP Ø5.2 37866
- Bone Mill with Guide Conical Connection RP Ø6.2 37867
- Bone Mill with Guide Conical Connection WP Ø6.7 37869
Nobel Biocare® Flapless Surgery Kit 32304

(The articles below can also be purchased individually.)

<table>
<thead>
<tr>
<th>Kit includes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nobel Biocare® Flapless Surgery Kit Box</td>
<td>32317</td>
</tr>
<tr>
<td>Tissue Punch NP</td>
<td>29628</td>
</tr>
<tr>
<td>Tissue Punch RP</td>
<td>29629</td>
</tr>
<tr>
<td>Tissue Punch WP</td>
<td>29630</td>
</tr>
<tr>
<td>Tissue Punch 6.0</td>
<td>32672</td>
</tr>
<tr>
<td>Tissue Punch Guide NP</td>
<td>29631</td>
</tr>
<tr>
<td>Tissue Punch Guide RP</td>
<td>29632</td>
</tr>
<tr>
<td>Tissue Punch Guide WP</td>
<td>29633</td>
</tr>
<tr>
<td>Tissue Punch Guide 6.0</td>
<td>32673</td>
</tr>
<tr>
<td>Drill Guide NP</td>
<td>29634</td>
</tr>
<tr>
<td>Drill Guide RP</td>
<td>29635</td>
</tr>
<tr>
<td>Drill Guide WP</td>
<td>29636</td>
</tr>
<tr>
<td>Drill Guide 6.0</td>
<td>32674</td>
</tr>
</tbody>
</table>

Prosthetic Kit 37448

(The articles below can also be purchased individually.)

<table>
<thead>
<tr>
<th>Kit includes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prosthetic Kit Box</td>
<td>37443</td>
</tr>
<tr>
<td>Manual Torque Wrench Prosthetic</td>
<td>29165</td>
</tr>
<tr>
<td>Screwdriver Machine Unigrip™ 20 mm</td>
<td>29151</td>
</tr>
<tr>
<td>Screwdriver Machine Unigrip™ 30 mm</td>
<td>29153</td>
</tr>
<tr>
<td>Screwdriver Machine Multi-unit 21 mm</td>
<td>29158</td>
</tr>
<tr>
<td>Omnigrip™ Screwdriver Machine 20 mm</td>
<td>37379</td>
</tr>
<tr>
<td>Omnigrip™ Screwdriver Machine 30 mm</td>
<td>37381</td>
</tr>
<tr>
<td>Manual Torque Wrench Prosthetic</td>
<td>29165</td>
</tr>
</tbody>
</table>
Implants

<table>
<thead>
<tr>
<th>NobelActive®</th>
<th>Diameter x Length (mm)</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 x 10 mm</td>
<td></td>
<td>36769</td>
</tr>
<tr>
<td>3.0 x 11.5 mm</td>
<td></td>
<td>36770</td>
</tr>
<tr>
<td>3.0 x 13 mm</td>
<td></td>
<td>36771</td>
</tr>
<tr>
<td>3.0 x 15 mm</td>
<td></td>
<td>36772</td>
</tr>
<tr>
<td>NP 3.5 x 8.5 mm</td>
<td></td>
<td>35221</td>
</tr>
<tr>
<td>NP 3.5 x 10 mm</td>
<td></td>
<td>34125</td>
</tr>
<tr>
<td>NP 3.5 x 11.5 mm</td>
<td></td>
<td>34126</td>
</tr>
<tr>
<td>NP 3.5 x 13 mm</td>
<td></td>
<td>34127</td>
</tr>
<tr>
<td>NP 3.5 x 15 mm</td>
<td></td>
<td>34128</td>
</tr>
<tr>
<td>NP 3.5 x 18 mm</td>
<td></td>
<td>35215</td>
</tr>
<tr>
<td>RP 4.3 x 8.5 mm</td>
<td></td>
<td>35223</td>
</tr>
<tr>
<td>RP 4.3 x 10 mm</td>
<td></td>
<td>34131</td>
</tr>
<tr>
<td>RP 4.3 x 11.5 mm</td>
<td></td>
<td>34132</td>
</tr>
<tr>
<td>RP 4.3 x 13 mm</td>
<td></td>
<td>34133</td>
</tr>
<tr>
<td>RP 4.3 x 15 mm</td>
<td></td>
<td>34134</td>
</tr>
<tr>
<td>RP 4.3 x 18 mm</td>
<td></td>
<td>35219</td>
</tr>
<tr>
<td>RP 5.0 x 8.5 mm</td>
<td></td>
<td>35225</td>
</tr>
<tr>
<td>RP 5.0 x 10 mm</td>
<td></td>
<td>34137</td>
</tr>
<tr>
<td>RP 5.0 x 11.5 mm</td>
<td></td>
<td>34138</td>
</tr>
<tr>
<td>RP 5.0 x 13 mm</td>
<td></td>
<td>34139</td>
</tr>
<tr>
<td>RP 5.0 x 15 mm</td>
<td></td>
<td>34140</td>
</tr>
<tr>
<td>RP 5.0 x 18 mm</td>
<td></td>
<td>35220</td>
</tr>
<tr>
<td>WP 5.5 x 7 mm</td>
<td></td>
<td>37806</td>
</tr>
<tr>
<td>WP 5.5 x 8.5 mm</td>
<td></td>
<td>37807</td>
</tr>
<tr>
<td>WP 5.5 x 10 mm</td>
<td></td>
<td>37808</td>
</tr>
<tr>
<td>WP 5.5 x 11.5 mm</td>
<td></td>
<td>37809</td>
</tr>
<tr>
<td>WP 5.5 x 13 mm</td>
<td></td>
<td>37810</td>
</tr>
<tr>
<td>WP 5.5 x 15 mm</td>
<td></td>
<td>37811</td>
</tr>
</tbody>
</table>
Surgical components

Drills

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision Drill</td>
<td>36118</td>
</tr>
<tr>
<td>Twist Drill 1.5 x 7–15 mm</td>
<td>31278</td>
</tr>
<tr>
<td>Twist Drill with Tip 2 x 7–10 mm</td>
<td>32296</td>
</tr>
<tr>
<td>Twist Drill with Tip 2 x 7–15 mm</td>
<td>32297</td>
</tr>
<tr>
<td>Twist Drill with Tip 2 x 10–18 mm</td>
<td>32299</td>
</tr>
<tr>
<td>Twist Step Drill 2.4/2.8 7–10 mm</td>
<td>32260</td>
</tr>
<tr>
<td>Twist Step Drill 2.4/2.8 7–15 mm</td>
<td>32261</td>
</tr>
<tr>
<td>Twist Step Drill 2.4/2.8 10–18 mm</td>
<td>32262</td>
</tr>
<tr>
<td>Twist Step Drill 2.8/3.2 7–10 mm</td>
<td>37873</td>
</tr>
<tr>
<td>Twist Step Drill 2.8/3.2 7–15 mm</td>
<td>34638</td>
</tr>
<tr>
<td>Twist Step Drill 2.8/3.2 10–18 mm</td>
<td>34639</td>
</tr>
<tr>
<td>Twist Step Drill 3.2/3.6 7–10 mm</td>
<td>32263</td>
</tr>
<tr>
<td>Twist Step Drill 3.2/3.6 7–15 mm</td>
<td>32264</td>
</tr>
<tr>
<td>Twist Step Drill 3.2/3.6 10–18 mm</td>
<td>32265</td>
</tr>
<tr>
<td>Twist Step Drill 3.8/4.2 7–10 mm</td>
<td>32275</td>
</tr>
<tr>
<td>Twist Step Drill 3.8/4.2 7–15 mm</td>
<td>32276</td>
</tr>
<tr>
<td>Twist Step Drill 3.8/4.2 10–18 mm</td>
<td>32277</td>
</tr>
<tr>
<td>Twist Step Drill 4.2/4.6 7–10 mm</td>
<td>37874</td>
</tr>
<tr>
<td>Twist Step Drill 4.2/4.6 7–15 mm</td>
<td>34582</td>
</tr>
<tr>
<td>Twist Step Drill 4.2/4.6 10–18 mm</td>
<td>34583</td>
</tr>
<tr>
<td>Twist Step Drill 4.2/5.0 7–10 mm</td>
<td>37875</td>
</tr>
<tr>
<td>Twist Step Drill 4.2/5.0 7–15 mm</td>
<td>37876</td>
</tr>
</tbody>
</table>

Screw Taps

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screw Tap NobelActive® 3.0</td>
<td>36816</td>
</tr>
<tr>
<td>Screw Tap NobelActive® NP 3.5</td>
<td>36236</td>
</tr>
<tr>
<td>Screw Tap NobelActive® RP 4.3</td>
<td>36237</td>
</tr>
<tr>
<td>Screw Tap NobelActive® RP 5.0</td>
<td>36238</td>
</tr>
<tr>
<td>Screw Tap NobelActive® WP 5.5 7–10 mm</td>
<td>37871</td>
</tr>
<tr>
<td>Screw Tap NobelActive® WP 5.5 11.5–15 mm</td>
<td>37872</td>
</tr>
</tbody>
</table>

Direction Indicator Ø2/Ø2.4–2.8 mm

<table>
<thead>
<tr>
<th>Code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>32112</td>
<td></td>
</tr>
</tbody>
</table>

Implant Drivers

<table>
<thead>
<tr>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implant Driver CC 3.0 28 mm</td>
<td>36773</td>
</tr>
<tr>
<td>Implant Driver CC 3.0 37 mm</td>
<td>36774</td>
</tr>
<tr>
<td>Implant Driver CC NP 28 mm</td>
<td>36718</td>
</tr>
<tr>
<td>Implant Driver CC NP 37 mm</td>
<td>36719</td>
</tr>
<tr>
<td>Implant Driver CC RP 28 mm</td>
<td>36720</td>
</tr>
<tr>
<td>Implant Driver CC RP 37 mm</td>
<td>36721</td>
</tr>
<tr>
<td>Implant Driver CC WP 28 mm</td>
<td>37859</td>
</tr>
<tr>
<td>Implant Driver CC WP 37 mm</td>
<td>37860</td>
</tr>
</tbody>
</table>
Bone Mills and Guides
- Bone Mill with Guide CC 3.0 Ø4.0 mm: 37861
- Bone Mill Guide CC 3.0: 37862
- Bone Mill with Guide CC NP Ø4.4 mm: 37863
- Bone Mill with Guide CC NP Ø5.2 mm: 37864
- Bone Mill Guide CC NP: 37865
- Bone Mill with Guide CC RP Ø5.2 mm: 37866
- Bone Mill with Guide CC RP Ø6.2 mm: 37867
- Bone Mill Guide CC RP: 37868
- Bone Mill with Guide CC WP Ø6.7 mm: 37869
- Bone Mill Guide CC WP: 37870

Cover Screws
- Cover Screw CC 3.0: 36775
- Cover Screw CC NP: 36649
- Cover Screw CC RP: 36650
- Cover Screw CC WP: 37812

Manual Torque Wrench
- NobelActive® Manual Torque Wrench Surgical: 34584
- Manual Torque Wrench Adapter Surgical: 28840
- Manual Torque Wrench Prosthetic: 29165
- Manual Torque Wrench Adapter Prosthetic: 29167

Screwdrivers
- Screwdriver Machine Unigrip™ 20 mm: 29151
- Screwdriver Machine Unigrip™ 25 mm: 29152
- Screwdriver Machine Unigrip™ 30 mm: 29153
- Screwdriver Machine Unigrip™ 35 mm: 29154
- Screwdriver Manual Unigrip™ 20 mm: 29148
- Screwdriver Manual Unigrip™ 28 mm: 29149
- Screwdriver Manual Unigrip™ 36 mm: 29150
- Omnigrip™ Screwdriver Machine 20 mm: 37379
- Omnigrip™ Screwdriver Machine 30 mm: 37381

Surgical Drape Kit 2-pack
- 12T7400

Drill Extension Shaft
- 29164

Surgical Driver
- 32180
Nobel Biocare® Osteotome Kit 32321

Soft Tissue Punches
- Soft Tissue Punch Ø 4.1 mm, 5/pkg 3222000
- Soft Tissue Punch Ø 5.2 mm, 5/pkg 3222002
- Soft Tissue Punch Ø 6.2 mm, 5/pkg 3222004
Temporary restorations

For the full assortment of abutments, see the Nobel Biocare product catalog.

Temporary Abutments

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immediate</td>
<td>Temporary Abutment CC 3.0 1.5 mm</td>
<td>36777</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment CC 3.0 3.0 mm</td>
<td>36778</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment CC NP 1.5 mm</td>
<td>36653</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment CC NP 3.0 mm</td>
<td>36655</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment CC RP 1.5 mm</td>
<td>36654</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment CC RP 3.0 mm</td>
<td>36656</td>
</tr>
<tr>
<td>Plastic Coping</td>
<td>Immediate Temporary Abutment</td>
<td>31656</td>
</tr>
<tr>
<td></td>
<td>QuickTemp™ Abutment CC NP 1.5 mm</td>
<td>36659</td>
</tr>
<tr>
<td></td>
<td>QuickTemp™ Abutment CC NP 3.0 mm</td>
<td>36657</td>
</tr>
<tr>
<td></td>
<td>QuickTemp™ Abutment CC RP 1.5 mm</td>
<td>36660</td>
</tr>
<tr>
<td></td>
<td>QuickTemp™ Abutment CC RP 3.0 mm</td>
<td>36658</td>
</tr>
<tr>
<td>Plastic Coping</td>
<td>QuickTemp™ Abutment Conical</td>
<td>33404</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Engaging CC 3.0</td>
<td>36779</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Engaging CC NP</td>
<td>36663</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Engaging CC RP</td>
<td>36664</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Engaging CC WP 1.5 mm</td>
<td>37823</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Engaging CC WP 3 mm</td>
<td>37824</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Non-Engaging CC NP</td>
<td>36661</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Non-Engaging CC RP</td>
<td>36662</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Non-Engaging CC WP 1.5 mm</td>
<td>37825</td>
</tr>
<tr>
<td></td>
<td>Temporary Abutment Non-Engaging CC WP 3 mm</td>
<td>37826</td>
</tr>
<tr>
<td>Plastic Coping</td>
<td>Anatomical PEEK WP 6×7 mm</td>
<td>37821</td>
</tr>
<tr>
<td></td>
<td>Anatomical PEEK WP 7×8 mm</td>
<td>37822</td>
</tr>
<tr>
<td>Slim Temporary</td>
<td>Abutment 3.0 6.5 mm</td>
<td>37675</td>
</tr>
<tr>
<td></td>
<td>Abutment 3.0 7.5 mm</td>
<td>37676</td>
</tr>
<tr>
<td></td>
<td>Abutment NP 6.5 mm</td>
<td>37671</td>
</tr>
<tr>
<td></td>
<td>Abutment NP 7.5 mm</td>
<td>37672</td>
</tr>
<tr>
<td></td>
<td>Abutment RP 6.5 mm</td>
<td>37673</td>
</tr>
<tr>
<td></td>
<td>Abutment RP 7.5 mm</td>
<td>37674</td>
</tr>
</tbody>
</table>

Healing Abutments

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healing</td>
<td>Abutment CC 3.0 Ø3.2×3 mm</td>
<td>36794</td>
</tr>
<tr>
<td></td>
<td>Abutment CC 3.0 Ø3.2×5 mm</td>
<td>36795</td>
</tr>
<tr>
<td></td>
<td>Abutment CC 3.0 Ø3.2×7 mm</td>
<td>36796</td>
</tr>
<tr>
<td></td>
<td>Abutment CC 3.0 Ø3.8×3 mm</td>
<td>36797</td>
</tr>
<tr>
<td></td>
<td>Abutment CC 3.0 Ø3.8×5 mm</td>
<td>36798</td>
</tr>
<tr>
<td></td>
<td>Abutment CC 3.0 Ø3.8×7 mm</td>
<td>36799</td>
</tr>
<tr>
<td>Healing Abutments (continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP \varnothing 3.6×3 mm</td>
<td>36639</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP \varnothing 3.6×5 mm</td>
<td>36640</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP \varnothing 3.6×7 mm</td>
<td>36687</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP \varnothing 5×3 mm</td>
<td>36641</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP \varnothing 5×5 mm</td>
<td>36642</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP \varnothing 5×7 mm</td>
<td>36668</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 3.6×3 mm</td>
<td>36643</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 3.6×5 mm</td>
<td>36644</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 3.6×7 mm</td>
<td>36872</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 5×3 mm</td>
<td>36645</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 5×5 mm</td>
<td>36646</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 5×7 mm</td>
<td>36873</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 6×3 mm</td>
<td>36647</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 6×5 mm</td>
<td>36648</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP \varnothing 6×7 mm</td>
<td>36874</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC WP \varnothing 5×3 mm</td>
<td>37813</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC WP \varnothing 5×5 mm</td>
<td>37814</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC WP \varnothing 6.5×3 mm</td>
<td>37815</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC WP \varnothing 6.5×5 mm</td>
<td>37816</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP Bridge \varnothing 4×3 mm</td>
<td>36864</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP Bridge \varnothing 4×5 mm</td>
<td>36865</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC NP Bridge \varnothing 4×7 mm</td>
<td>36886</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP Bridge \varnothing 5×3 mm</td>
<td>36889</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP Bridge \varnothing 5×5 mm</td>
<td>36870</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC RP Bridge \varnothing 5×7 mm</td>
<td>36871</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC WP Bridge \varnothing 6×3 mm</td>
<td>37817</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment CC WP Bridge \varnothing 6×5 mm</td>
<td>37818</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment Anatomical PEEK WP 6×7 mm</td>
<td>37819</td>
<td></td>
</tr>
<tr>
<td>Healing Abutment Anatomical PEEK WP 7×8 mm</td>
<td>37820</td>
<td></td>
</tr>
<tr>
<td>Slim Healing Abutment $3.0 \ 5$ mm</td>
<td>37669</td>
<td></td>
</tr>
<tr>
<td>Slim Healing Abutment $3.0 \ 7$ mm</td>
<td>37670</td>
<td></td>
</tr>
<tr>
<td>Slim Healing Abutment NP 5 mm</td>
<td>37666</td>
<td></td>
</tr>
<tr>
<td>Slim Healing Abutment NP 7 mm</td>
<td>37665</td>
<td></td>
</tr>
<tr>
<td>Slim Healing Abutment RP 5 mm</td>
<td>37667</td>
<td></td>
</tr>
<tr>
<td>Slim Healing Abutment RP 7 mm</td>
<td>37668</td>
<td></td>
</tr>
</tbody>
</table>
Manual torque wrench

For the surgeon, the torque required to place implants provides insight into the primary stability of the implant. For restorative procedures, tightening the abutment and prosthetic screws to the recommended torque specifications will more effectively control screw-joint integrity during patient function.

The manual torque wrench is a convenient tool for achieving the desired torque.

Manual Torque Wrench – Surgical
Intended for tightening or adjusting implant position.
- Insert Implant Driver [Conical Connection](#).

Manual Torque Wrench – Prosthetic
Intended for screws with a tightening torque of 15–35 Ncm. Compatible with all machine screwdrivers.
- Insert the applicable driver.

Use of the Manual Torque Wrench Surgical
- Assemble the torque wrench by inserting the implant driver.
- To tighten an implant, adjust the direction indicator so that the arrow is pointing toward the level arm and rotate clockwise.
- To loosen an implant, adjust the direction indicator so that the arrow is pointing away from the level arm and rotate counterclockwise.

Warning: Using the wrench body instead of the level arm may result in excessive torque being transferred to the screw and/or implant site.
Drill stops

Drill Stop Kit 32430

<table>
<thead>
<tr>
<th>Kit includes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill Stop Kit Box</td>
<td>33062</td>
</tr>
<tr>
<td>Drill Stop Ø 2 mm</td>
<td>33063</td>
</tr>
<tr>
<td>Drill Stop Ø 2.8 mm</td>
<td>33064</td>
</tr>
<tr>
<td>Drill Stop Ø 3 mm</td>
<td>33075</td>
</tr>
<tr>
<td>Drill Stop Ø 3.2 mm</td>
<td>33077</td>
</tr>
<tr>
<td>Drill Stop Ø 3.4 mm</td>
<td>33078</td>
</tr>
<tr>
<td>Drill Stop Ø 3.6 mm</td>
<td>33084</td>
</tr>
<tr>
<td>Drill Stop Ø 4.2 mm</td>
<td>33081</td>
</tr>
</tbody>
</table>

The drill stops allow for a safe and accurate surgical procedure by predetermining the drill depth of twist drills and twist step drills. The kit is used to store, autoclave and facilitate the mounting of the drill stops.

1 Mount drill stop
- Slide drill stop onto corresponding drill.
- Place drill in mounting hole corresponding to desired drill depth. Use large holes for drills Ø 3.4 and above.

2 Tighten drill stop
Tighten the screw on the drill stop using the Screwdriver Unigrip.

3 Drill to drill stop
Drill until predetermined drill depth is reached.
Cleaning and sterilization

Sterile components

The devices delivered sterile have a “Sterile” marking on the label.
See current cleaning and sterilization guidelines for details: nobelbiocare.com/sterilization

Note: Implants must never be resterilized.

Implants

Implants are delivered sterile, are for single use only, and must be used prior to the labeled expiration date. Do not use implants if the packaging has been damaged or previously opened.

Twist and twist step drills, precision drill and screw taps

Twist Drills and Twist Step Drills are delivered sterile and for single use only. Screw Taps are delivered sterile and reusable.

Abutments and plastic copings

Multi-unit Abutment, Snappy Abutment, QuickTemp Abutment, Immediate Temporary Abutment and plastic copings are delivered sterile and for single use only.
Non-sterile components
Care and maintenance of reusable instruments are crucial for successful treatment. Well-maintained instruments not only safeguard your patients and staff against infection, but are also essential for the outcome of the total treatment. See current cleaning and sterilization guidelines for details: nobelbiocare.com/sterilization.

Contra-angle
For cleaning and sterilization procedures, see specific instructions from the respective manufacturer.

Abutments and plastic copings
Some abutments made of titanium, gold alloy, and plastic (PEEK) are delivered non-sterile. For more information refer to the label on the specific abutment. It is recommended to sterilize the abutment prior to placing it in the oral cavity. For sterilization, see current cleaning and sterilization guidelines: nobelbiocare.com/sterilization

Notes:
– If modifications have been made to the abutment, clean the abutment prior to sterilization.
– Non-sterile plastic copings should not be re-sterilized, as they are for single use only.
Customer service worldwide

Americas
- **Brazil**
 - Nobel Biocare Brazil
 - Phone: 0800 16 999 6
- **Canada**
 - Nobel Biocare Canada
 - Phone: +1 800 939 9394
- **Chile**
 - Dental Biocare
 - Phone: +56 220 19282
- **Colombia**
 - Hospimedics S.A.
 - Phone: +57 1 640 0808
- **Mexico**
 - Nobel Biocare Mexico
 - Phone: +52 55 524 974 60
- **USA**
 - Nobel Biocare USA
 - Phone: +1 800 322 5001

Asia Pacific
- **Australia**
 - Nobel Biocare Australia
 - Phone: 1800 804 597
- **China**
 - Nobel Biocare China
 - Phone: +86 21 5206 6655
- **Hong Kong**
 - Nobel Biocare Hong Kong
 - Phone: +852 2845 1266
- **India**
 - Nobel Biocare India
 - Phone: 1800 266 9998
- **Japan**
 - Nobel Biocare Japan
 - Phone: +81 3 6717 6191
- **New Zealand**
 - Nobel Biocare New Zealand
 - Phone: 0800 441 657
- **Singapore**
 - Nobel Biocare Singapore
 - Phone: +65 6737 7967
- **Taiwan**
 - Nobel Biocare Taiwan
 - Phone: +886 080 00 779

Europe, Middle East and Africa
- **Austria**
 - Nobel Biocare Austria
 - Phone: +43 1 892 89 90
- **Belgium**
 - Nobel Biocare Belgium
 - Phone: +32 2 467 41 70
- **Denmark**
 - Nobel Biocare Denmark
 - Phone: +45 39 40 48 46
- **Finland**
 - Nobel Biocare Finland
 - Phone: +358 20 740 61 00
- **France**
 - Nobel Biocare France
 - Phone: +33 1 49 20 00 30
- **Germany**
 - Nobel Biocare Germany
 - Phone: +49 221 500 850
- **Hungary**
 - Nobel Biocare Hungary
 - Phone: +36 1 279 33 79
- **Ireland**
 - Nobel Biocare Ireland
 - Phone: 1800 677 306
- **Italy**
 - Nobel Biocare Italy
 - Phone: +39 800 53 93 28
- **Lithuania**
 - Nobel Biocare Lithuania
 - Phone: +370 5 268 3448
- **Netherlands**
 - Nobel Biocare Netherlands
 - Phone: +31 30 635 49 49
- **Norway**
 - Nobel Biocare Norway
 - Phone: +47 23 24 98 30
- **Poland**
 - Nobel Biocare Poland
 - Phone: +48 22 549 93 52
- **Portugal**
 - Nobel Biocare Portugal
 - Phone: +351 800 300 100

Russia
- **Nobel Biocare Russia**
 - Phone: +7 495 974 77 55

South Africa
- **Nobel Biocare South Africa**
 - Phone: +27 11 802 0112

Spain
- **Nobel Biocare Spain**
 - Phone: +34 900 850 008

Sweden
- **Nobel Biocare Sweden**
 - Phone: +46 31 81 88 00

United Kingdom
- **Nobel Biocare UK**
 - Phone: +44 208 756 3300

Distributor markets
- **Bulgaria, Croatia, Cyprus, Czech Republic, Greece, Iran, Jordan, Kuwait, Lebanon, Malta, Romania, Saudi Arabia, Serbia, Slovenia, Turkey, United Arab Emirates**
 - Phone: +48 22 549 93 55

nobelbiocare.com/contact